Informational Site Network
 Privacy

 Home Top Rated Puzzles Most Viewed Puzzles All Puzzle Questions Random Puzzle Question Search

## THE ECCENTRIC CHEESEMONGER.

(Moving Counter Problem)
The cheesemonger depicted in the illustration is an inveterate puzzle
lover. One of his favourite puzzles is the piling of cheeses in his
warehouse, an amusement that he finds good exercise for the body as well
as for the mind. He places sixteen cheeses on the floor in a straight
row and then makes them into four piles, with four cheeses in every
pile, by always passing a cheese over four others. If you use sixteen
counters and number them in order from 1 to 16, then you may place 1 on
6, 11 on 1, 7 on 4, and so on, until there are four in every pile. It
will be seen that it does not matter whether the four passed over are
standing alone or piled; they count just the same, and you can always
carry a cheese in either direction. There are a great many different
ways of doing it in twelve moves, so it makes a good game of "patience"
to try to solve it so that the four piles shall be left in different
stipulated places. For example, try to leave the piles at the extreme
ends of the row, on Nos. 1, 2, 15 and 16; this is quite easy. Then try
to leave three piles together, on Nos. 13, 14, and 15. Then again play
so that they shall be left on Nos. 3, 5, 12, and 14.

Next: THE EXCHANGE PUZZLE.

Previous: CATCHING THE MICE.

### Random Questions

A Lodging-house Difficulty.
Moving Counter Problem
The Family Ages.
Money Puzzles
The Perplexed Plumber
MISCELLANEOUS PUZZLES
The Donjon Keep Window
PUZZLING TIMES AT SOLVAMHALL CASTLE
The Riddle Of The Tiled Hearth
THE MERRY MONKS OF RIDDLEWELL
The Broken Coins.
Money Puzzles
The Mystic Eleven.
Money Puzzles
The Honeycomb Puzzle.
Unicursal and Route Problems
Card Triangles.
Problems Concerning Games.
The Abbot's Puzzle.
Money Puzzles
The Tramps And The Biscuits
MISCELLANEOUS PUZZLES
Under The Veil.
Chessboard Problems
Making A Flag
MISCELLANEOUS PUZZLES
The Stop-watch.
Money Puzzles
The Sixteen Sheep.
Combination and Group Problems