Why is X never doubled?... Read more of Why is X never doubled? at Speaking Writing.comInformational Site Network Informational
Privacy
Home Top Rated Puzzles Most Viewed Puzzles All Puzzle Questions Random Puzzle Question Search


THE LOCKERS PUZZLE.





(Money Puzzles)
[Illustration:
A B C
================== ================== ==================
| +--+ +--+ +--+ | | +--+ +--+ +--+ | | +--+ +--+ +--+ |
| | | | | | | | | | | | | | | | | | | | | | | |
| +--+ +--+ +--+ | | +--+ +--+ +--+ | | +--+ +--+ +--+ |
| | | | | |
| +--+ +--+ +--+ | | +--+ +--+ +--+ | | +--+ +--+ +--+ |
| | | | | | | | | | | | | | | | | | | | | | | |
| +--+ +--+ +--+ | | +--+ +--+ +--+ | | +--+ +--+ +--+ |
| | | | | |
================== ================== ==================
| +--+ +--+ +--+ | | +--+ +--+ +--+ | | +--+ +--+ +--+ |
| | | | | | | | | | | | | | | | | | | | | | | |
| +--+ +--+ +--+ | | +--+ +--+ +--+ | | +--+ +--+ +--+ |
------------------ ------------------ ------------------
]
A man had in his office three cupboards, each containing nine lockers,
as shown in the diagram. He told his clerk to place a different
one-figure number on each locker of cupboard A, and to do the same in
the case of B, and of C. As we are here allowed to call nought a digit,
and he was not prohibited from using nought as a number, he clearly had
the option of omitting any one of ten digits from each cupboard.
Now, the employer did not say the lockers were to be numbered in any
numerical order, and he was surprised to find, when the work was done,
that the figures had apparently been mixed up indiscriminately. Calling
upon his clerk for an explanation, the eccentric lad stated that the
notion had occurred to him so to arrange the figures that in each case
they formed a simple addition sum, the two upper rows of figures
producing the sum in the lowest row. But the most surprising point was
this: that he had so arranged them that the addition in A gave the
smallest possible sum, that the addition in C gave the largest possible
sum, and that all the nine digits in the three totals were different.
The puzzle is to show how this could be done. No decimals are allowed
and the nought may not appear in the hundreds place.


Read Answer






Next: THE THREE GROUPS.

Previous: ODD AND EVEN DIGITS.



Add to Informational Site Network
Report
Privacy
ADD TO EBOOK




Random Questions

Round The Coast.
Moving Counter Problem
Youthful Precocity.
Money Puzzles
St. George's Banner.
Patchwork Puzzles
The Wrong Hats.
Combination and Group Problems
The Baskets Of Plums.
Magic Squares Problem.
The Sailor's Puzzle.
Unicursal and Route Problems
The Trusses Of Hay.
Money Puzzles
The Twelve Pennies.
Moving Counter Problem
The Six Pawns.
The Guarded Chessboard
The Broken Coins.
Money Puzzles
The Banner Puzzle.
Patchwork Puzzles
The Torn Number.
Money Puzzles
The Five Crescents Of Byzantium.
Chessboard Problems
The Silk Patchwork
GREEK CROSS PUZZLES
The Three Teacups
THE SQUIRE'S CHRISTMAS PUZZLE PARTY