# THE STONEMASON'S PROBLEM.

A stonemason once had a large number of cubic blocks of stone in his
yard, all of exactly the same size. He had some very fanciful little
ways, and one of his queer notions was to keep these blocks piled in
cubical heaps, no two heaps containing the same number of blocks. He had
discovered for himself (a fact that is well known to mathematicians)
that if he took all the blocks contained in any number of heaps in
regular order, beginning with the single cube, he could always arrange
those on the ground so as to form a perfect square. This will be clear
to the reader, because one block is a square, 1 + 8 = 9 is a square, 1 +
8 + 27 = 36 is a square, 1 + 8 + 27 + 64 = 100 is a square, and so on.
In fact, the sum of any number of consecutive cubes, beginning always
with 1, is in every case a square number.
One day a gentleman entered the mason's yard and offered him a certain
price if he would supply him with a consecutive number of these cubical
heaps which should contain altogether a number of blocks that could be
laid out to form a square, but the buyer insisted on more than three
heaps and _declined to take the single block_ because it contained a
flaw. What was the smallest possible number of blocks of stone that the