Sustainable - Download the EBook Electricity FarmInformational Site Network Informational
Home Top Rated Puzzles Most Viewed Puzzles All Puzzle Questions Random Puzzle Question Search


(Money Puzzles)
At first sight you would hardly think there was matter for dispute in
the question involved in the following little incident, yet it took the
two persons concerned some little time to come to an agreement. Mr.
Smithers hired a motor-car to take him from Addleford to Clinkerville
and back again for L3. At Bakenham, just midway, he picked up an
acquaintance, Mr. Tompkins, and agreed to take him on to Clinkerville
and bring him back to Bakenham on the return journey. How much should he
have charged the passenger? That is the question. What was a reasonable
fare for Mr. Tompkins?
"Nine worthies were they called."
DRYDEN: _The Flower and the Leaf._
I give these puzzles, dealing with the nine digits, a class to
themselves, because I have always thought that they deserve more
consideration than they usually receive. Beyond the mere trick of
"casting out nines," very little seems to be generally known of the laws
involved in these problems, and yet an acquaintance with the properties
of the digits often supplies, among other uses, a certain number of
arithmetical checks that are of real value in the saving of labour. Let
me give just one example--the first that occurs to me.
If the reader were required to determine whether or not
15,763,530,163,289 is a square number, how would he proceed? If the
number had ended with a 2, 3, 7, or 8 in the digits place, of course he
would know that it could not be a square, but there is nothing in its
apparent form to prevent its being one. I suspect that in such a case he
would set to work, with a sigh or a groan, at the laborious task of
extracting the square root. Yet if he had given a little attention to
the study of the digital properties of numbers, he would settle the
question in this simple way. The sum of the digits is 59, the sum of
which is 14, the sum of which is 5 (which I call the "digital root"),
and therefore I know that the number cannot be a square, and for this
reason. The digital root of successive square numbers from 1 upwards is
always 1, 4, 7, or 9, and can never be anything else. In fact, the
series, 1, 4, 9, 7, 7, 9, 4, 1, 9, is repeated into infinity. The
analogous series for triangular numbers is 1, 3, 6, 1, 6, 3, 1, 9, 9. So
here we have a similar negative check, for a number cannot be triangular
(that is, (n squared + n)/2) if its digital root be 2, 4, 5, 7, or 8.

Read Answer



Add to Add to Reddit Add to Digg Add to Add to Google Add to Twitter Add to Stumble Upon
Add to Informational Site Network

Random Questions

Buying Apples.
Money Puzzles
A Puzzle For Motorists.
Unicursal and Route Problems
Two Crosses From One
The Nine Counters.
Money Puzzles
The Four Knights' Tours.
The Guarded Chessboard
The Banker's Puzzle.
Money Puzzles
The Suffragists' Meeting.
Money Puzzles
A Chain Puzzle.
Unclassified Problems.
A Queer Thing In Money.
Money Puzzles
The Garden Puzzle.
Patchwork Puzzles
Changing Places.
Money Puzzles
The Letter Block Puzzle.
Moving Counter Problem
Hannah's Puzzle.
Unicursal and Route Problems
A Lodging-house Difficulty.
Moving Counter Problem
The Four Lions.
Chessboard Problems